High mechanical $f_m Q_m$ product tuning fork cavity optomechanical transducers

Rui Zhang¹, Yundong Ren¹, Robert Ilic², Marcelo Davanço², Kartik Srinivasan², Vladimir Aksyuk², Yuxiang Liu^{1,2,*}

¹Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA ²Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA Corresponding author: yliu11@wpi.edu

1

➢Background

- Cavity optomechanics
- Cantilever-based optomeachanical transducers

Motivation

Device working principles, and test results

- Near-field optomechanical readout
- Geometry-determined resonant frequency
- ➤Temperature compensation

➤Summary and future work

Cavity Optomechanics

Opt. Express 20, 18268 (2012)

Cantilever-based Si₃N₄ Devices

- Cantilever-based optomechanical devices
 - Separation between optical and mechanical resonator
 - Small mass
 - Moderate fundamental mechanical frequencies (MHz)
 - High sensitivity

Nat. Commun. 1355 (2017)

Phys. Rev. X 4, 021052

Nat. Commun. 1994 (2013)

Center for Nanoscale Science & Technology

Motivation

To develop a high-precision, low-drift displacement measurement platform for various precision MEMS sensor applications

- Enhanced transduction at small scales
 - Frequency stability and limit of detection: $\langle \delta f/f0 \rangle = (1/2Q)10^{-(DR/20)}$
- > High mechanical $f_m Q_m$ product
 - High bandwidth
 - Force sensitivity scales as 1/(f_m^{0.5}Q_m^{0.5})
 - Overcome tradeoff betwee f_m and Q_m

- > Si₃N₄ mechanical resonator with design-determined mechanical frequency
 - Si₃N₄ intrinsic stress varies with different fabrication processes
- Mechanical resonator with design-enabled temperature compensation
 - Remove influence from temperature
 - Not rely on matching different materials/in-situ active temperature control.
- ➢ Solution:
 - Tuning fork optomechanical transducer with near-field readout and special nonlinear mechanical clamp design.

Near-field Optomechanical Readout

NIST & Center for Nanoscale Science & Technology

Device Characterization Setup

Random motion of a resonator driven by thermomechanical noise can be resolved

VPI

NIST & Center for Nanoscale Science & Technology

High $f_m Q_m$ **Product** – **Tuning fork**

Loss for mechanical resonators operating in vacuum

All these losses can be reduced by localized motion

Localized Motion Reduces Mechanical Loss

NIST & Center for Nanoscale Science & Technology

Stress Engineering

- Doubly clamped Si₃N₄ tuning forks with a high tensile stress
 - LPCVD Si₃N₄ has high intrinsic tensile stress uniformly distributed
 - The stress retained with doubly clamped tuning forks but redistributed
 - Final beam stress/frequency can be engineered without reduction of Q_m

Measured Mechanical Spectra

Stress Engineering – More Controllable?

- Nonlinear clamp design enable the frequency only determined by geometry
 - In regular tuning fork, the final beam stress/frequency determined by both intrinsic stress and the geometry
 <u>Before device releasing</u>

Stress Engineering – More Controllable?

Temperature compensation

- With similar working principles, temperature sensitivity of vibration frequencies can also be engineered.
 - Temperature induced frequency fluctuation is mainly due to thermal expansion mismatch between device layer and substrate
 - Coefficient of Thermal Expansion (CTE) of Si: 2.6 × 10⁻⁶ (K⁻¹)
 - CTE of LPCVD Si₃N₄: 1.6 × 10⁻⁶ (K⁻¹)

Summary

- Doubly clamped Si₃N₄ tuning fork cavity optomechanical sensors
 - Near-field optomechanical readout
 - High f_mQ_m product resulting from tuning fork structure and increased beam stress
 - Geometry determined stress/frequency tuning
 - Temperature compensation with tunable temperature sensitivity
- Further development
 - Inertia sensing
 - Fully integration with photonic integrated circuit

Nature Photonics 6(11): 768-772

Nano Letters 17(9): 5587-5594

Thanks for your attention. Questions?

